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1. INTRODUCTION

The evolution of altruism in spatially structured
populations has a long history, repeatedly examined in
the literature. Cooperative behaviours have been docu-
mented in an enormous variety of biological systems
(e.g., Dugatkin, 1997) and are thought to have been
essential to the major transitions in evolution—from the
incorporation of organelles into cells and the develop-
ment of multicellularity to the creation of social com-
munities (Maynard Smith and Szathmáry, 1995). At the
centre of the discussion is the tension between coopera-
tion and competition. A key question is whether limited
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dispersal, creating what Hamilton (1964) called a viscous
population, promotes or inhibits altruistic behaviour
compared with a randomly mixing population. We con-
sider a model in which altruists assist all the individuals
in their interaction group and dispersal is limited so that
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nearby individuals tend to be close relatives. Most of the
benefit of altruism goes to relatives and therefore benefits
the altruism gene. The benefit also leads to increased
competition among relatives and thus inhibits the evolu-
tion of altruism. We use Hamilton’s (1964) powerful
inclusive fitness method to analyse this problem. This
method determines the evolutionary fate of a behaviour
by adding up the effects of the altruistic act on the fitness
of all individuals in the population, weighted by the
relatedness of the individual to the actor.
Hamilton’s (1964) rule says that altruistic behaviour,
which incurs cost c to the actor and bestows benefit b to
the recipient, should be selectively favoured if br > c.
0040-5809/01 $35.00
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This rule has been widely quoted and used, partly
because it is mathematically simple, and partly because it
has a strong intuitive character. However for the rule to
hold, the fitness effects b and c and the relatedness rmust
be properly measured. Much work on inclusive fitness
over the past 35 years has focused on the question of how
these quantities should be calculated (Michod and
Hamilton, 1980; Wilson et al., 1992; Taylor, 1992a,b). In



particular it has been noted that b and c must represent
long-term realized fitness effects, rather than immediate
consequences of the altruistic act. Much recent work has
focused on structured populations and the central idea
here is that the structure affects both the relatedness and
the fitness effects; indeed, the structure holds the key for
the correct measurement of both of these quantities.
A surprisingly simple result is obtained for some
simple population structures with discrete nonoverlap-
ping generations. The benefits of altruism exactly
balance the changes in competitive effect and the inclu-
sive fitness effect of the actor is simply the net direct
effect of its behaviour on its own fitness (Wilson et al.,
1992; Taylor, 1992a,b). Thus, altruistic behaviour is
selected exactly when it would be favoured in a randomly
mixing population. Remarkably, this holds indepen-
dently of the dispersal rate in these populations. The
same result has also been found in finite deme-structured
populations (Rousset and Billiard, 2000; Taylor et al.,
2000). Simulation studies of altruism in lattice popula-
tions have shown significant departures from this exact
balance, often favouring the evolution of altruism. These
simulations and the models of Wilson et al. (1992) and
Taylor (1992a,b) differ in a variety of important ways.
Instead of nonoverlapping generations and constant
population densities, these calculations allow genera-
tions to overlap (Nowak et al., 1994; Nakamaru et al.,
1997, 1998) or allow variable population densities by
permitting some sites to remain vacant (Mitteldorf and
Wilson, 2000). It’s not clear from these studies whether
the spatial structure of the population is the key ingre-
dient which facilitates altruism or whether other features
(e.g., precise details of the altruistic interaction, popula-
tion density, generational overlap) are responsible.
Variable population density may favour altruism, but
we do not consider this in our model (Kelly, 1994;
Mitteldorf andWilson, 2000).
Recently it was shown that overlapping generations
promotes the evolution of altruism in a patch-structured
population (Taylor and Irwin, 2000). Furthermore, in
this population structure there is a difference between
altruistic acts which affect fecundity and those which
affect survival. With the former, altruism is more
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strongly favoured and with the latter it is less strongly
favoured than in a randomly mixing population. This
difference persists throughout the entire range of survival
probabilities. Here we present a model of altruism in one-
and two-dimensional stepping-stone populations which
extends the patch model of Taylor and Irwin (2000), and
we obtain both of their results: overlapping generations
promote altruism in stepping-stone populations, with a
similar difference between altruistic gifts of fecundity and
survival. Finally, we use the iterated prisoner’s dilemma
as an alternative model of altruistic interactions and
compare our results with recent simulations.

2. THE MODEL

We consider populations in a one-dimensional lattice
with two nearest-neighbour sites and a two-dimensional
lattice with four nearest-neighbours. The lattice is infinite
with one asexually reproducing haploid individual per
site. Prior to reproduction, nearest-neighbours interact
with the possibility of altruistic behaviour. Each indi-
vidual produces a large number of offspring which dis-
perse to one of the neighbouring sites with total proba-
bility d. Dispersers incur a cost and only a proportion
1−k arrive at a new site. The effects of d and k are
combined into a single variable pj− i the probability an
offspring competing on site jwas born on site i,

pj− i=˛
1−d
1−kd

, i=j

d(1−k)
N(1−kd)

,
i, j are nearest-neighbours;N is
the number of nearest-neighbors

0, otherwise. (1)

Thus, p0 is the probability that an offspring is native.
After reproduction, each adult survives and breeds again
in the next generation with probability s. On a site in
which the resident adult dies, the offspring, both native
and immigrant, compete on an equal basis for the vacant
spot. Offspring which do not win a site die and the cycle
begins again. Our notation is summarized in Table I.
An altruistic act costs the actor and benefits its neigh-
bours, affecting either fecundity or survival. For both
fecundity and survival effects, an individual’s fitness is its
expected number of offspring which breed in the next
generation plus its probability of breeding again. We will
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use Dw to measure fitness changes due to the altruistic
behaviour. We denote by di the direct effect of an altruist
at any site j on the breeding individual at site i+j. In our
fecundity model, di is the multiplicative change in
numbers of offspring and in our survival model di is the
multiplicative change in survival. In our stepping-stone
population d0 is the effect on the actor, d1 the effect on
each nearest-neighbour, and all other di are zero. These
effects di are not changes in fitness but they alter the
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TABLE I

Notation Used in the Main Altruism Model

d Dispersal
di Effect of a
k Dispersal
N Number o
nij Average n
nj=; i nij Average n
pij=pj− i=nij/nj Probabili
rij=rj− i Equilibriu
s The prob
wi, Dwi Fitness (a

Note. In a homogeneous lattice, variables with two indices depend
this, e.g. rj− i=rij. In two dimensions this is a vector difference and we
neighbours.

fitness of individuals by an amount which depends on
dispersal and survival rate.
An inclusive fitness calculation adds up the fitness
effects of a focal mutant weighted by the relatedness
between the affected individual and the actor. We
denote the relatedness between adults at sites i and j by
rij. Our lattice is homogeneous so we often abbreviate
this as rj− i noting only the displacement between sites.
Relatednesses for several pairs of nearby sites are
computed using the lattice structure and stepping-stone
dispersal pattern with no selection and this calculation
is described in Appendix A. We assume that the costs
and benefits are small (weak selection), so our inclusive
fitness results are exact to first order in di and will give
reasonable approximations for small di (Taylor, 1996).
We assume dispersal at the ES dispersal rate which
depends on survival rate (Appendix B).
In the following sections we find conditions on the di
which favour altruistic acts, considering first those
which affect fecundity and then those which affect sur-
vival. Within each section we write a general expression
for the inclusive fitness effect and find conditions in
terms of the altruistic effects (di) which select altruism
in one- and two-dimensional stepping-stone popula-
tions. We then adapt our general results to another
model of social interactions: the iterated prisoner’s
dilemma.

Evolution of Altruism
Fecundity Effects

We now analyse the effect of an altruistic mutant at
site 0. The altruistic behaviour alters the fecundity of
the mutant and individuals on neighbouring sites. Since
there is some dispersal from sites ±1 to sites ±2, there
e
ist at the origin on the fecundity or survival of an individual on site i
t; a fraction 1−k arrive at the new site
eighbours
ber of offspring competing for site j who come from site i
ber of offspring competing for site j
n offspring competing for site j came from site i
elatedness between an adult on site i and an adult at site j
ity that an adult survives to breed in the next generation,
change in fitness due to the mutant) of an adult on site i

y on the separation between sites and are sometimes written to reflect
ex with these differences, e.g. r0, ±1=r±1, 0 is the relatedness of nearest-

will be an effect on the number of competing juveniles
at sites ±2. Since some offspring born on sites ±3 will
disperse to sites ±2, these offspring will experience a
different amount of competition. Thus, the inclusive
fitness effect includes fitness changes of individuals up
to three steps away.
The inclusive fitness effect DwIF is (see Appendix C)

DwIF=(1−s) 1C
i
diri−C

ijk
dk pj− i pj−kri 2 . (2)

If s=0, the relatedness recursion (A1) allows us to
simplify (2), obtaining

DwIF=d0 1 r0−C
ik
ri pk pk−i 2 (3)

(Taylor, 1992b). With nonoverlapping generations the
inclusive fitness effect is independent of the effect of the
mutant on other breeders (di, i ] 0). This is a general
result for any dispersal pattern or range of altruistic
interactions on a lattice of arbitrary dimension.

One dimension. In a one-dimensional stepping-stone
population the inclusive fitness effect (2) simplifies to

DwIF=r0Dw0+2r1Dw1+2r2Dw2+2r3Dw3, (4)
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where the net fitness effects on breeders at a distance i,
Dwi, are

Dw0=(1−s)(d0(1−p
2
0−2p

2
1)−d1(4p0 p1))

Dw1=(1−s)(−2d0 p0 p1+d1(1−p
2
0−3p

2
1))

Dw2=−(1−s)(d0 p
2
1+2d1 p0 p1)

Dw3=−(1−s) d1 p
2
1.



In the limit as sQ 1, the fitness effects approach 0 as
expected.
The altruistic behaviour is favoured if DwIF > 0,
which can be written as

2d15
r1−r3−p0(4r0−7r1+4r2−r3)
2(r0−r2+p0(3r0−4r1+r2))

6+d0 > 0. (5)

The quantity in square brackets is an altruism
threshold: the cost–benefit ratio −d0/(Nd1) must be
smaller than this, assuming d1 > 0, for altruism to be
favoured. Survival probability does not appear expli-
citly in this threshold, but is felt through the relatedness ri.

Two dimensions. In two dimensions, the inclusive
fitness effect involves terms from the six kinds of sites
identified in Fig. 1,

DwIF=r0, 0Dw0, 0+4r0, 1Dw0, 1+4r1, 1Dw1, 1+4r0, 2Dw0, 2

+8r1, 2Dw1, 2+4r0, 3Dw0, 3, (6)

where the net fitness effects on breeders at a distance i,
Dwi, are

Dw0, 0=(1−s)(d0(1−p
2
0−4p

2
1)−d1(8p0 p1))

Dw0, 1=(1−s)(d0(−2p0 p1)+d1(1−p
2
0−9p

2
1))

Dw1, 1=−2(1−s)(d0(p
2
1)+d1(2p0 p1))

Dw0, 2=−(1−s)(d0(p
2
1)+d1(2p0 p1))

Dw1, 2=−3(1−s) d1 p
2
1

Dw0, 3=−(1−s) d1 p
2
1.

The altruistic behaviour is favoured if DwIF > 0, which
can be written as

4d1|
7r0, 1−6r1, 2−r0, 3−p0(8r0, 0−25r0, 1
+16r1, 1+8r0, 2−6r1, 2−r0, 3)

4(3r0, 0−2r1, 1−r0, 2
+p0(5r0, 0−8r0, 1+2r1, 1+r>0, 2))

}+d0 > 0.
(7)
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Survival Effects

Now we want the altruistic behaviour to have an
effect on survival probability, not on fecundity.
Assuming a nonzero survival probability (s > 0), the
inclusive fitness effect of the mutant is (Appendix C)

DwIF=s 1C
i
ridi−C

ij
ridj pj− i 2 . (8)
FIG. 1. Site classes on the two dimensional stepping-stone lattice
labelled with relatedness to the centre (black) site. Shaded sites are in
the interaction neighbourhood of an individual on the centre site.

One dimension. The inclusive fitness effect (8) in one
dimension is

DwIF=Dw0+2r1Dw1+2r2Dw2, (9)

where the changes in fitness of the mutant and four
nearest-neighbours are

Dw0=s(d0(1−p0)−2d1 p1)

Dw1=s(−d0 p1+d1(1−p0))

Dw2=−sd1 p1.

The altruistic act is favoured if

2d1 5
r0−2r1+r2
2(r1−r0)
6+d0 > 0. (10)

Irwin and Taylor
Two dimensions. The fitnesses of individuals on
fewer sites are affected with survival effects in two
dimensions compared to fecundity effects. Individuals
two steps from the mutant are affected because of the
change in survival of individuals one step away. The
inclusive fitness effect is

DwIF=Dw0, 0+4r0, 1Dw0, 1+4r1, 1Dw1, 1+4r0, 2Dw0, 2, (11)



FIG. 2. Altruism threshold −d0/(Nd1) as a function of survival
s. Results for fecundity (solid) and survival (dashed) effects in one (A)
and two (B) dimensions. Thick lines are for zero-cost dispersal and
thin lines for a small dispersal cost (k=0.2). The horizontal dotted
line is the altruism threshold for random-mixing populations or s=0.

where the fitness changes (C9) are

Dw0, 0=s(d0−4d1 p1−d0 p0)

Dw0, 1=s(d1−d0 p1−d1 p0)

Dw1, 1=−2sd1 p1

Dw0, 2=−sd1 p1.

The altruistic act is favoured if

Evolution of Altruism
4d1 5
r0, 0−4r0, 1+2r1, 1+r0, 2

4(r0, 1−r0, 0)
6+d0 > 0. (12)

Computational results. Figure 2 shows the altruism
threshold−d0/(Nd1) as a function of survival s for one-
(N=2) and two-dimensional (N=4) stepping-stone
populations with both fecundity and survival effects.
The horizontal line at 0 is the threshold for a randomly
interacting population; altruism is selected if the cost to
the actor is in fact a direct benefit (d0 > 0). With
fecundity effects, the threshold increases with s from 0,
allowing altruism to be favoured for increasingly large
costs. With survival effects, the threshold also increases
with increasing survival, but altruism is inhibited rela-
tive to a randomly interacting population and requires
a large negative cost to overcome the benefit given to
neighbours. In the limit as sQ 1, the threshold
approaches 0. Adding a cost to dispersal (thin lines)
pushes the threshold closer to that of a random-mixing
population.

Iterated Prisoner’s Dilemma

Our second example of social behaviour is the
iterated prisoner’s dilemma game (Trivers, 1971;
Axelrod and Hamilton, 1981). A pair of individuals
play a series of prisoner’s dilemma games, each game
followed by another with a constant probability w. We
consider two pure strategies: tit for tat (TFT) and all
defect (AD). If a player adopts TFT, it first cooperates
and then repeats its partner’s previous choice on sub-
sequent interactions. AD players defect on each turn.
The payoff matrix is shown in Table II. We are espe-
cially interested in the possibility of altruists invading a
selfish population so we use mixed strategies charac-
terized by the (initially small) probability of cooperative
behaviour. A related approach varies costs and benefits
as a function of a common ‘‘investment’’ parameter
(Killingback et al., 1999). We also note that although
the iterated prisoner’s dilemma is often used to describe
complex organisms capable of long-term memory, the
TFT and AD strategies are very simple, requiring very
little sophisticated machinery.
Our inclusive fitness argument above can be adapted
to this problem. The population-wide strategy is to use

TABLE II

Payoffs for the Iterated Prisoner’s Dilemma Where TFT Is the
Cooperative Strategy ‘‘Tit-for-Tat’’ and AD Is ‘‘Always Defect’’

Partner
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Actor TFT AD

TFT R/(1−w) S+Pw/(1−w)
AD T+Pw/(1−w) P/(1−w)

Note. The parameters T, R, P and S are the payoffs for the pri-
soner’s dilemma and satisfy T > R > P > S. The probability of
playing the prisoner’s dilemma again with the same partner is w. We
use T=5, R=3, P=1, and S=0 for numerical examples. If w=0
the game reduces to the prisoner’s dilemma.



FIG. 3. Threshold values of TFT frequency p as a function of
survival s for the iterated prisoner’s dilemma game with a probability
of re-encounter of w=3/5 in one- (A) and two-dimensional (B)
stepping-stone populations. The horizontal dotted line is the
threshold for random-mixing populations (11) or s=0 and other lines
are as in Fig. 2. Increased frequency of TFT is favoured above the
appropriate line. For no-cost dispersal in one dimension, TFT can’t
be invaded by AD for s > 3(P−S)

2T−3P+S=
3
7 with fecundity effects and AD

can’t be invaded by TFT for s < 9−13w1+3w=
3
7 with survival effects.

TFT with probability p and AD with probability 1−p
while a mutant uses a deviant strategy pŒ=p+d
(Appendix D). An actor’s score (d0) is the average
payoff it receives from interactions with all of its
neighbours (not including itself). If the population-wide
probability of playing TFT p is greater than a threshold
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(D5), then individuals with greater pŒ are selected. In
randomly mixing populations (and populations with
fecundity effects and nonoverlapping generations), the
threshold (D5) takes a simpler form, independent of the
size of the interaction neighbourhood,

p >
1−w
3w−1

and w >
1
3
, (13)
FIG. 4. Threshold values of TFT frequency p as a function of the
probability of re-encounter w for the iterated prisoner’s dilemma
game with survival probability of s=2/5 in one- (A) and two-
dimensional (B) stepping-stone populations. The dotted line is the
threshold for randomly-mixing populations (13) or s=0 and other
lines are as in Fig. 2. Increased frequency of TFT is favoured above
the appropriate line.

assuming the numerical values for the payoffs from
Table II.
Threshold values of p are shown as a function of s
and w in Fig. 3 and 4, respectively. Fecundity
thresholds (solid lines) are below the random-mixing
threshold (dotted line) and survival effects (dashed
lines) are above the random-mixing threshold. Results
for one (A) and two (B) dimensions are shown as well

Irwin and Taylor
as zero-cost dispersal (thick lines) and dispersal with a
small cost (k=0.2, thin lines). Populations with p
above the corresponding line favour increasing p, that
is larger probabilities of playing TFT. Increasing dis-
persal cost k moves the thresholds closer to the random-
mixing threshold (13), inhibiting altruism with fecun-
dity effects and favouring it with survival effects. The
pattern is the same as the previous altruism example:
increasing s enlarges the area in parameter space where



altruism is favoured. A fecundity benefit favours
altruism more in a stepping-stone-structured population
than in an unstructured population, but survival
benefits make it more difficult for altruism to evolve.

3. DISCUSSION

Much recent attention has been focused on the effect
of the population structure on the evolution of a beha-
vioural trait as this affects not only the relatedness
between interactants, but also the realized fraction of
potential fitness changes. Less attention has been paid
to the question of what exactly is traded in a fitness
interaction, for example, fecundity vs survival, but
recent work has shown that this can have a nontrivial
effect on the selective advantage of the trait. We find
such an effect here; benefits of survival increase the
level of competition among offspring and reduce
realized fitness more than benefits of fecundity.
The population model used in the paper is a stepping-
stone structure with overlapping generations, and our
primary interest is the effect of the survival rate of
breeders on the selective advantage of altruism. We
have three main results. First, there is a distinction
between benefits of fecundity and survival. Under the
former, altruism is more strongly favoured and under
the latter altruism is less strongly favoured than in a
random-mixing population. Second, there is an effect of
overlapping generations. For both types of benefit, an
increased survival probability promotes altruism. Third,
although the stepping-stone model describes a much
richer population structure than a simple island popu-
lation, our results here show the same qualitative results
found in an island population (Taylor and Irwin, 2000).
This indicates that the precise details of a population’s
spatial structure may not be very important.
We use an inclusive fitness model to measure the
effects of altruism, and in order for this to predict the
course of genetic evolution, we need to assume that
selection is ‘‘weak,’’ that is that altruistic behaviour has
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a small selective effect, which means that the costs and
benefits are small (Taylor, 1996). There are several
reasons for this assumption, but an important one is
that our calculation of relatedness (Appendix A) is
valid only when the allele causing the altruistic beha-
viour is neutral. The selective advantage of altruism
that we calculate is then actually the rate at which the
fitness of this allele increases as the effect of the allele is
increased above zero.
When breeder survival s is zero and there is no
overlap between generations we find that, independent
of the dispersal rate of offspring, the altruism threshold
occurs where the direct effect d0 of the altruist on itself
is positive (3). This is expected in a random-mixing
population, but the point is that it is also obtained
when dispersal of offspring is only partial in both one-
and two-dimensional stepping-stone populations. How-
ever, if breeder survival is positive, so that there is
overlap between generations, a decrease in the dispersal
rate does have an effect on the threshold level of
altruism. But here there is a striking difference between
gifts of fecundity and gifts of survival—relative to a
random-mixing population, altruism is promoted under
a fecundity benefit, but discouraged under a survival
benefit. This is illustrated in Fig. 2. The difference
between these two cases is easily understood. A survival
benefit can be regarded as a special class of extra
offspring that have the appropriate probability of
winning a site, but that do not disperse, so they must
remain on their home site. This increases the local
competition among offspring and reduces the advan-
tage of altruism.
The altruism threshold decreases as breeder survival s
increases, favouring higher levels of altruistic beha-
viour. The analysis of this effect is complicated because
the threshold depends on both s and the dispersal rate
d, and the ES value of d itself increases with s (Irwin
and Taylor, 2000). This latter relationship, the increase
of dispersal rate with s, is an example of the phenome-
non we are discussing—increased altruism with higher s.
Increasing the cost of dispersal has different effects
on the altruism threshold for fecundity and survival
effects (Fig. 2). First, with fecundity effects, increasing
dispersal cost reduces the ES dispersal rate and inhibits
altruism. This is because the increased cost reduces the
proportion of immigrant offspring on a patch and thus
increases competition among native offspring, resulting
in a reduced benefit from the altruistic act. In contrast,
a survival benefit increases competition on neighbour-
ing sites. This affects the recipient’s fitness only through
its offspring which disperse to these sites. If dispersal
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cost is higher, a smaller fraction of offspring disperse,
so the cost has less effect on the recipient.
Several recent studies of social behaviour in lattice-
structured populations are worth comparing to our
results. Nowak et al. (1994) simulated the prisoner’s
dilemma game on a lattice with fecundity effects and
found that cooperators do better in models with
overlapping instead of nonoverlapping generations.
Nakamaru et al. (1997, 1998) studied the iterated



prisoner’s dilemma on the lattice with both survival and
fecundity effects. They simulated populations of TFT
and AD strategists in one-and two-dimensional step-
ping-stone populations. There are several differences
between their model and ours: they assume complete
dispersal (d=1, an empty site can only be colonized by
a neighbour, and not the offspring of the dead individ-
ual) and they use continuously overlapping genera-
tions—only one individual on the lattice dies per time-
step. Despite these differences they obtained similar
results, including a difference between fecundity and
survival effects, except that while we found altruism
benefitting a neighbour’s fecundity to be favoured, in
their model the same effect could work in either direc-
tion. Nakamaru et al. (1997, 1998) attribute their
results to population structure, but in our example of
nonoverlapping generations the results are identical in
both structured and randomly mixing populations. In
their model with sufficiently long games (w near 1),
TFT is able to invade a population of AD individuals.
In one dimension their result was especially striking:
their threshold in the survival effect and the fecundity
effect could be shown as a vertical line at w=3/5 and
w=−3/7, respectively, in our Fig. 4A. One of their
derivations of the vertical threshold used a ‘‘pair-edge’’
analysis of the velocity of the interface between clusters
of TFT and AD (Ellner et al., 1998, Nakamaru et al.,
1998). A critical assumption in this calculation is that
adjacent sites on the interface can’t die (and potentially
be replaced with the other strategy) in the same
generation. This is approximately true in our model
only at high survival rates.

APPENDIX A

Relatedness Coefficients

A recursion for the relatedness between an adult at
site i and at site j in the next generation (denoted by Œ)
in terms of relatedness in the current generation is
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r −ij=˛Ck, m rkm p̃ki p̃mj, i ] j
1, i=j

(A1)

where the sums range over all sites and the probability
that an offspring competing on site j was born on site
i is
p̃ij=˛
1−d−m, i=j

d
N
, i, j are nearest-neighbours;N is the

number of nearest-neighbors

m, i or j=.

0, otherwise.

(A2)

In the absence of any long-range dispersal or mutation
these equilibrium relatednesses are all 1 (in one and two
dimensions only), so we introduce as a technical device
an additional dispersal m from the birth site to sites
with unrelated individuals at infinity. Equations (A1)
and (A2) do not include effects of overlapping genera-
tions or costly dispersal. These can be incorporated
with a change of variables, replacing d and m in (A2)
with d̂ and m̂,

d̂=d(1−s) 1 1−k
1−k(d+m)

2

m̂=m(1−s) 1 1−k
1−k(d+m)

2
(A3)

(Irwin and Taylor, 2000). With these substitutions
p̃ij becomes p̂ij and its interpretation changes to the
that probability site j is won by an offspring or adult
survivor from site i.
The solution of recursion (12) in one dimension is
described by Kimura and Weiss (1964) and for
overlapping generations by Irwin and Taylor (2000).
The coefficients rj which we need are (dropping terms
O(m))

r0=1

r1=1−F

r2=1−4
`1− d̂−(1− d̂)

d̂
F

d̂

(A4)

Irwin and Taylor
r3=1−
16(1− d̂) 11−

2
−`1− d̂2+d̂2

d̂2
F,

where

F== 2m̂

d̂(1− d̂)
.



In two dimensions, the equilibrium relatedness
between adults separated by the vector (j, k) is

rj, k=c(Aj, k(z1)+(−1) j+k Aj, k(z2)), (A5)

where

Aj, k(z)=
1

(2p)2d̂
F
2p

0
F
2p

0

cos(jh1) cos(kh2)
z− cos h1− cos h2

dh1dh2

and

z1=2 11+
m̂

d̂
2

z2=2 1
2− m̂

d̂
−12

(A6)

and the constant c is determined by r0, 0=1 (Weiss and
Kimura, 1965; Irwin and Taylor, 2000). Malécot (1975)
uses a similar method to obtain results for both finite
and infinite stepping-stone populations.
We evaluate the Aj, k(z) in two ways. If j=k then we
can simplify the integrals using special functions even-
tually obtaining forms involving the complete elliptic
integrals K( · ) and E( · ) (Abramowitz and Stegun,
1964),

A0, 0(z)=
2
pz
K 12
z
2 (A7)

A1, 1(z)=
1
p
1z−2

z
2 K 12

z
2− z
p
E 12
z
2 . (A8)

Off-diagonal elements are evaluated with algebraic
manipulations and trigonometric identities, obtaining

A0, 1(z)=−
1
2
+
z
2
A0, 0

A (z)=2zA −2A −A . (A9)

Evolution of Altruism
0, 2 0, 1 1, 1 0, 0

If the mutant affects the fecundity of the nearest-
neighbours, two more relatedness coefficients are
needed:

A1, 2(z)=zA1, 1−A0, 1

A0, 3(z)=2z(A0, 0+A0, 2)−2A1, 2−5A0, 1−2. (A10)
APPENDIX B

Dispersal

Evolutionarily stable dispersal rates can be calculated
with an inclusive fitness argument analogous to the
calculation in this paper. In fact, dispersal can be
thought of as an altruistic act because dispersers incur a
cost of dispersal and benefit offspring which remain
behind by reducing competition among relatives. The
results we need are below and derivations can be found
in Irwin and Taylor (2000).
The ES dispersal rate in one dimension is

dg=
1
2k
2(1−`1−k(1−k)(1−s) )−k(1−s)

1−`1−k(1−k)(1−s)−k(1−s)
(B1)

and with no cost (k=0),

dg=
3+s
4
. (B2)

In two dimensions, the ES dispersal rate dg is a solution
of

2(2dgsk−s−1) K 1 (1−s)(1−k) d
g

dg(1−s+k+sk)−2
2

+p(2−dg(1−s+k+sk))=0, (B3)

where K( · ) is the complete elliptic integral of the first
kind (Abramowitz and Stegun, 1964).

APPENDIX C

Derivation of Inclusive Fitness Effects
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Fecundity effects. The fitness of the adult on site i is
the sum of 1 times the probability that the adult sur-
vives and the probability that its offspring out-compete
other offspring on each site, ;j pij, times the probability
that the resident adult dies,

wi=s+(1−s) C
j
pij. (C1)



The number of individuals from site i which compete
on site j once the mutant has been introduced n −ij, is the
original number nij increased by a small relative change,

n −ij=nij(1+di). (C2)

The average number of individuals competing for site j
is nj=;i nij and with the mutant this is

n −j=C
i
n −ij=nj 11+C

i
di pij 2 . (C3)

The new probability of an individual from site i
obtaining a vacant breeding spot on site j is p −ij, written
to first order in d

p −ij=
n −ij
n −j
=pij11+di−C

k
dk pkj 2 . (C4)

The fitness of the adult on site i with a mutant at site
0 is

w −i=s+(1−s) C
j
p −ij, (C5)

and together with (C1) and (C4) we obtain the inclusive
fitness effect of the mutant

DwIF=C
i
Dwiri=(1−s) C

ij
ri pij 1di−C

k
dk pkj 2 . (C6)

Symmetry allows us to write pij=pj− i and p−j=pj; the
probability of dispersal to a site depends only on the
separation between the two sites and not the absolute
position of the sites. The simplified expression is (2).

Survival effects. Writing the survival of an adult on
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site i as si=s we can introduce an effect of the mutant,
altering the survival probability by a small relative
change di,

s −i=si(1+di). (C7)

We leave nij and pij as before, and note that pij can be
interpreted as the probability that an individual from
site i wins on site j conditioned on the death of the
individual at site j. The fitness of an individual on site
i is

wi=si+C
j
pij(1−sj) (C8)

and after a mutant is introduced at site 0, the fitness is

w −i=C
j
p −ij(1−s

−

j)+s
−

i=C
j
pij(1−sj(1+dj))+si(1+di)

=wi−C
j
dj pij sj+si di. (C9)

The inclusive fitness effect DwIF=;i riDwi is (8).

APPENDIX D

Iterated Prisoner’s Dilemma

The average payoff to a p actor playing a q player is

W(p, q)=pq 1 R
1−w
2+(1−p) q 1T+ Pw

1−w
2 (D1)

+p(1−q)1S+ Pw
1−w
2+(1−p)(1−q)1 P

1−w
2 . (D2)

The cost to an actor of using the mutant strategy pŒ=
p+d is

C=−(W(pŒ, p)−W(p, p))=−d0 (D3)

and the benefit to its neighbours is

B=W(p, pŒ)−W(p, p)=Nd1. (D4)

We use capital letters as a reminder that these are the
net cost C to the actor and the benefit B which is
divided, on average, among the N neighbours not
including the actor. Substituting (D3, D4) into (5, 7, 10, 12)

Irwin and Taylor
to obtain an altruism relatedness threshold −d0/(Nd1)
and solving for p to first order in d using the payoffs
from Table II we obtain the threshold

p=
1−w
3w−1

·

1 −d0
Nd1
2 (3+N)−4

1+1 −d0
Nd1
2 (N−2)

. (D5)



If w > 1/3 then increased altruism (frequency of
playing TFT) is selected for p greater than this
threshold and decreased altruism is selected for smaller
p. If w < 1/3 then AD is the ESS.
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